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We consider moderately dense bounded shear flows of agitated homogeneous inelastic
frictionless solid spheres colliding in a gas between two parallel bumpy walls at finite
particle Reynolds numbers, volume fractions between 0.1 and 0.4, and Stokes numbers
large enough for collisions to determine the velocity distribution of the spheres. We
adopt a continuum model in which constitutive relations and boundary conditions for
the granular phase are derived from kinetic theory, and in which the gas contributes
a viscous dissipation term to the fluctuation energy of the grains. We compare its
predictions to recent lattice-Boltzmann (LB) simulations. The theory underscores the
role played by the walls in the balances of momentum and fluctuation energy. When
particle inertia is large, the solid volume fraction is nearly uniform, thus allowing us
to treat the rheology using unbounded flow theory with an effective shear rate, while
predicting slip velocities at the walls. When particle inertia decreases or fluid inertia
increases, the solid volume fraction becomes increasingly heterogeneous. In this case,
the theory captures the profiles of volume fraction, mean and fluctuation velocities
between the walls. Comparisons with LB simulations allow us to delimit the range of
parameters within which the theory is applicable.

1. Introduction
We consider sheared suspensions of solid spheres in a gas, in which the spheres

interact through binary collisions and possess significant fluctuation velocities. In such
agitated flows, collisions contribute to the transfer of momentum and fluctuation
energy (see, e.g. Sinclair & Jackson 1989; Louge, Mastorakos & Jenkins 1991;
Dasgupta, Jackson & Sundaresan 1994; Bolio, Yasuna & Sinclair 1995; Sundaram &
Collins 1997). The Stokes number St ≡ τvΓ measures the relative importance of grain
inertia and viscous forces acting on a sphere of viscous relaxation time τv = m/6πaμg ,
where m is the mass of the sphere, a is its radius, μg is the gas viscosity, and Γ is the
applied shear rate. The Reynolds number Re ≡ ρgΓ a2/μg compares fluid inertia and
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viscous forces, where ρg is the gas density. In this work, we interpret spatial variations
of particle fluctuation energy, volume fraction and velocity that are observed in
Lattice-Boltzmann (LB) simulations by solving the averaged equations of motion in
situations at moderate Stokes number for which the viscous dissipation of particle
fluctuation energy is significant.

At large Stokes number, the gas does not significantly affect the particle motion.
In the absence of body forces, particles with high St at a solid volume fraction
less than the dilatancy onset experience mainly collisional interactions (Onoda &
Liniger 1990), and their inertia dominates the momentum transfer in the granular
phase. Such ‘rapid granular flows’ are modelled by a kinetic theory that exploits an
analogy between the grains and molecules of a dense gas, thus defining a ‘granular
temperature’. The Boltzmann equation is solved approximately for the particle velocity
distribution, which is then used to calculate the transport coefficients (e.g. Lun et al.
1984; Jenkins & Richman 1985). Comparisons with molecular dynamic simulations
(see Louge et al. 1990, 1993, 2001; Bizon et al. 1999) and physical experiments
carried out in microgravity (see Louge et al. 2000, 2001; Xu, Louge &Reeves 2003)
have demonstrated the success of these theories for nearly elastic, weakly frictional
grains engaged in collisional interactions. As particle inertia decreases, hydrodynamic
interactions among particles progressively cause their particle velocity distribution to
deviate from expressions derived for rapid granular flows and, at some point, the
kinetic theory must account for interactions between particles and the gas.

Sangani et al. (1996) studied simple shear flows of a gas and agitated solid spheres,
in which the viscous dissipation plays a role in the fluctuation energy balance of the
solids, but the Reynolds number vanishes. In this case, the hydrodynamic interactions
among particles can be calculated by solving the Stokes equations for the flow.
These authors determined the particle velocity distribution function using a moments
method, and obtained constitutive relations for the stress tensor and the energy
flux. Their theory compared well with numerical simulations. For dense flows or at
high Stokes numbers, they also derived a cruder theory by taking into account the
viscous dissipation but assuming a Maxwellian velocity distribution. This simpler
theory agreed with more elaborate calculations over a wide range of Stokes numbers
when St/Rdiss � 2, where Rdiss is a dimensionless coefficient characterizing the viscous
dissipation of particle fluctuation energy. Wylie, Koch & Ladd (2003) considered
the effects of moderate fluid inertia on gas–solid flows with large particle inertia in
unbounded shear flows.

Verberg & Koch (2006) carried out LB simulations to investigate the increase of
viscous dissipation of particle fluctuation energy due to fluid inertia. They recorded
detailed profiles of flow parameters in sheared gas–particle flows between two bumpy
boundaries. They showed that at high Stokes number and low to moderate Reynolds
number, the sheared suspension resembles a simple shear flow with nearly Maxwellian
particle velocity distribution in the bulk, but with appreciable slip at the boundaries.
In this case, the rheology can be captured by a theory developed for unbounded flows
using effective shear rates. For lower Stokes numbers, because the bounded flows
exhibit substantial variations of solid volume fraction and granular temperature, the
theory must account for the role of boundaries.

In this paper, we consider shear flows of nearly elastic, frictionless solids suspended
in a gas between two parallel bumpy walls at moderate Stokes numbers and finite
Reynolds numbers. We focus on situations where the particle velocity distribution is
dominated by granular collisions and hydrodynamic interactions are simply captured
by a volumetric rate of viscous dissipation, thus allowing us to derive the transfer
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of momentum and fluctuation energy from a granular kinetic theory. We also derive
boundary conditions for the particle phase by considering collisional momentum and
energy transfer at the bumpy boundaries. The resulting averaged equations together
with boundary conditions predict at high Stokes numbers the nearly simple shear
flows simulated by Verberg & Koch (2006) and the slip velocities at the bumpy walls.
We also report new LB simulations at moderate Stokes numbers with significant
viscous dissipation of fluctuation energy. In these cases, the theory captures the role
of solid walls in the gas–particle system. We use it to predict spatial variations
of particle fluctuation energy, particle volume fraction, and the velocity profiles of
particles and gas. In addition, we also ran new LB simulations with inelastic particles.
Inelasticity further reduces granular agitation and produces greater deviations from
the Maxwellian velocity distribution. Comparison with the LB simulations allows us
to delimit the range of parameters for which the theory applies.

We outline the system of governing equations, apply it to the flows of interest,
and derive granular boundary conditions in § 2. We then present solutions for fully
developed flows, and compare our results with LB simulations in § 3. Although we
consider here only shear flows between solid boundaries, the equations that we have
developed can be applied to more general cases, e.g. with large relative velocities
between the two phases owing to the presence of a pressure gradient.

2. Governing equations
2.1. Arbitrary flows

We consider flows of nearly elastic, frictionless spheres of coefficient of normal
restitution e at a high enough Stokes number that the velocity distribution of the
grains is set by collisional interactions. For such flows, Jenkins & Richman (1985)
derived constitutive relations valid up to the order 1−e from the Boltzmann equation
using Grad’s 13-moment method, which Sela & Goldhirsch (1998) improved by a
Chapman–Enskog expansion to Burnett order. Assuming the homogeneous cooling
of granular agitation, Garzó & Dufty (1999) extended the constitutive relations to
spheres of arbitrary inelasticity. Kumaran (2006) and Goldhirsh, Noskowicz & Bar-
Lev (2005) also introduced particle roughness, but only focused on weakly dissipative
or dilute systems. For dense granular flows of inelastic spheres between two parallel
boundaries, we calculated that the theories of Jenkins & Richman (1985) and Garzó
& Dufty (1999) have nearly indistinguishable predictions in the parameter range of
our interest, e � 0.7 and 0 < ν � 0.5, where ν is the solid volume fraction. (Such
concurrence may not arise in flows with much higher gradients of ν, for which Garzó
& Dufty (1999) introduced an additional term in the constitutive expression for the
flux of fluctuation energy.) Therefore, for consistency with our derivation of boundary
conditions up to the order of 1 − e, we adopt the relations of Jenkins & Richman
(1985), which we incorporate into the balance equations for granular mass, momentum
and fluctuation energy, with added contributions from the gas to the momentum and
energy equations:

∂ρ

∂t
+ ∇ · (ρus) = 0, (2.1)

ρ

(
∂us

∂t
+ us · ∇us

)
= ∇ · Ts + ρ f s − ν∇Pg + β(ug − us), (2.2)

3
2
ρ

(
∂T

∂t
+ us · ∇T

)
= −∇ · q + Ts : ∇us − γinelas − γvis + γrel, (2.3)



184 H. Xu, R. Verberg, D. L. Koch and M. Y. Louge

where ρ = νρs is the bulk density, ρs is the material density of the spheres, us and ug

are the local mean particle and gas velocities, f s is the acceleration due to body forces
on the solid phase, Ts is the solid phase stress tensor, Pg is the gas phase pressure,
and β is the drag coefficient.

We note that the mass and momentum conservation equations (2.1) and (2.2) are
similar to those derived by Anderson & Jackson (1967). In particular, the presence
of the gas phase pressure term ν∇Pg in the particle phase momentum balance
equation gives rise to buoyancy, even when the relative velocity between the gas and
the particles vanishes. This term also captures the particle force due to an applied
pressure gradient that may be used to induce a relative velocity of the gas and particle
phases. In studies of porous media flows, such as Hill, Koch & Ladd (2001a ,b), this
effect is commonly incorporated within the drag term since the pressure gradient is
proportional to the relative velocity between the two phases.

In (2.3), T ≡ 〈 C · C 〉/3 is the granular temperature with fluctuation velocity
C ≡ cs − us and instantaneous particle velocity cs; γvis is the volumetric rate of
viscous dissipation; and γrel is the rate of energy production due to the mean relative
motion between the gas and particle phases.

In (2.2), the stress tensor is

Ts =
[
−Ps +

(
λ − 2

3
η
)
∇ · us

]
I + η

[
(∇us) + (∇us)

T
]
, (2.4)

where Ps is the granular pressure, I is the identity tensor, λ and η are the bulk and
shear viscosities, respectively. In (2.4), the first two terms in brackets have the same
form as in ordinary collisional granular fluids.

For flows of smooth, slightly inelastic, identical spheres, Jenkins & Richman (1985)
derived constitutive relations for pressure, transport coefficients and energy dissipation
rate. To the lowest order in 1 − e, their results are

Ps = 4ρFGT, (2.5)

λ =
8

3
√

π
ρσGT 1/2, (2.6)

and

η =
8J

5
√

π
ρσGT 1/2, (2.7)

where σ =2a is the sphere diameter. The flux of particle fluctuation energy is

q = −κ∇T , (2.8)

with conductivity

κ =
4M√

π
ρσGT 1/2, (2.9)

For 0 � 1 − e � 1, the rate of collisional dissipation is

γinelas =
24√

π
(1 − e)ρ

T 3/2

σ
G. (2.10)

In (2.5) to (2.10), the expression

G(ν) ≡ νg0(ν) (2.11)
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incorporates the Carnahan–Starling expression for the pair distribution function at
contact (Carnahan & Starling 1969),

g(r = σ/2) ≈ g0(ν) =
(2 − ν)

2(1 − ν)3
, (2.12)

which is valid for ν < 0.49 (Torquato 1995), and F (ν) = 1 + 1/(4G), J (ν) = 1 +
(π/12)[1 + 5/(8G)]2, and M(ν) = 1 + (9π/32)[1 + 5/(12G)]2.

The corresponding balance laws for the gas are

∂(1 − ν)ρg

∂t
+ ∇ · ((1 − ν)ρgug) = 0, (2.13)

(1 − ν)ρg

(
∂ug

∂t
+ ug · ∇ug

)
= ∇ · Tg + (1 − ν)ρg f g

− (1 − ν)∇Pg − β(ug − us), (2.14)

where f g is the acceleration from body forces acting on the gas phase, and Tg is the
gas phase stress tensor. Because the solid density is much greater than the gas density,
we ignore the added mass effect and the history force. For solid spheres in low-
Reynolds number shear flows, the effect of the lift force on particles is proportional
to Re1/2/St (Clift, Grace & Weber 1978), and thus it is negligible when the Stokes
number is large or when the Reynolds number is small.

To close the set of equations (2.1)–(2.3), (2.13) and (2.14), we now provide relations
for β , γvis, γrel and the stress tensor Tg . Sangani et al. (1996) determined the rate
of viscous dissipation γvis in simple shear flows at vanishing Reynolds number and
Stokes number large enough to achieve a nearly Maxwellian velocity distribution.
They obtained

γvis =
54μgT ν

σ 2
Rdiss(ν, εm), (2.15)

where εm is a dimensionless parameter characterizing the breakdown of the lubrication
force for small gaps between approaching particles. Sundararajakumar & Koch (1996)
calculated the exact non-continuum lubrication force when the gap is comparable
to the molecular mean free path of the gas λg . Sangani et al. (1996) obtained an
explicit expression for Rdiss by solving the Stokes equations for random arrays of
particles using a multipole method, in which they assumed that the lubrication force
at close contact remains constant when the gap is less than εmσ . By relating the total
energy dissipated during a collision with that calculated from the exact theory of
Sundararajakumar & Koch (1996), Sangani et al. (1996) found

εm = 9.76λg/σ, (2.16)

and interpreted εmσ as a length scale characterizing the importance of non-continuum
effects on the lubrication force between two smooth particles at close contact.

For real particles, the breakdown of the lubrication force can also result from
surface roughness (Smart & Leighton 1989) and gas compressibility (Gopinath, Chen
& Koch 1997). None of these mechanisms exists in the LB simulations. Instead, we
use a constant εm =0.01 to set the cutoff distance between two spheres, below which
forces acting on the spheres are constant.

Verberg & Koch (2006) extended the results of Sangani et al. (1996) for negligible
fluid inertia to Reynolds numbers up to 40. They captured the rate of viscous
dissipation with an effective drag coefficient resisting the fluctuating motion of the
particles. This coefficient increases linearly with a Reynolds number based on granular
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fluctuation velocity ReT ≡ ρgσT 1/2/μg . Verberg & Koch (2006) fitted the results in
the range 0 < ReT < 40 and 0.1 � ν � 0.4 using

Rdiss(ν, εm, ReT ) = Rdiss,0(ν, εm)

+ min{Ks(ν)ReT , [Ks(ν) − Kl(ν)]ReT,0(ν) + Kl(ν)ReT }, (2.17)

where

Rdiss,0(ν, εm) = 1 +
3√
2
ν1/2 +

135

64
ν ln ν

+ 11.08ν(1 − 4.66ν + 19.03ν2 − 25.15ν3) + G(ν) ln(1/εm), (2.18)

Ks(ν) = ν(3.3237 − 12.253ν + 32.970ν2) ReT < ReT,0,

Kl(ν) = ν(2.0233 − 6.4742ν + 19.773ν2) ReT > ReT,0,

}
(2.19)

and ReT,0 marks the transition from an initially rapid increase of Rdiss to a subsequent
slower increase with ReT ,

ReT,0(ν) = (0.1729 − 0.3416ν + 0.5973ν2)−1. (2.20)

In (2.18), the first three terms are an analytical result in the limit of small ν. In the
last term, G(ν) is proportional to the collision frequency, and ln(1/εm) characterizes the
dissipation of particle fluctuation kinetic energy due to the non-continuum lubrication
force preceding each collision. The dependence of Rdiss on ReT is analogous to the
increase of drag with Reynolds number in a fixed bed, as in the Ergun equation
(Ergun 1952).

When considering sedimenting suspensions, Koch & Sangani (1999) pointed out
that the relative mean velocity between gas and solids and the corresponding drag
force induce additional particle agitation. Koch & Sangani based their expression
of the sedimentation drag force on the mean particle velocity relative to laboratory
coordinates. Instead, we write their results in terms of the mean relative velocity
between gas and particles. The drag coefficient in (2.2) is then

β = 18μgν(1 − ν)2Rdrag(ν)/σ 2, (2.21)

and the volumetric rate of energy production rate in (2.3) is

γrel =
162μ2

gν(1 − ν)2

ρsσ 3
√

T
|ug − us)|2 S∗(ν), (2.22)

where

S∗(ν) =
ν[Rdrag(ν)]2

2
√

πG(ν)(1 + 3.5ν1/2 + 5.9ν)
. (2.23)

Koch & Sangani (1999) determined Rdrag(ν) from numerical simulations. For 0 < ν <

0.4, they found

Rdrag(ν) =
1 + 3(ν/2)1/2 + 135

64
ν ln ν + 17.14ν

1 + 0.681ν − 8.48ν2 + 8.16ν3
. (2.24)

For ν � 0.4, they invoked the empirical correlation of Carman (1937)

Rdrag =
10ν

(1 − ν)3
+ 0.7, (2.25)

to which they added the constant 0.7 to match (2.24) and (2.25) at ν = 0.4. Note that
the drag coefficient of Koch & Sangani (1999) in (2.24) is for small Reynolds number
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based on relative velocity. It is the regime of interest here, because in our shear flows,
the relative velocity is appreciable only in a small region near the wall where the gas
moves with the latter, while the particles slip. We will return to this discussion in
greater detail in § 3.4. For other applications with finite Re, we could replace Rdrag by
the expression of Hill et al. (2001a ,b) for random arrays of spheres, assuming that
the hydrodynamic interactions are the same as in a fixed bed.

For the moderately high Stokes numbers of interest here, the particle-phase stress
is at least 10 times larger than the gas-phase stress (Verberg & Koch 2006). Therefore,
a reasonable approximation to the particle-phase properties can be obtained by
neglecting the gas-phase inertia and stress in (2.14). However, the fluid-phase stress
does influence the detailed fluid velocity profile near the walls. The gas-phase stress
tensor Tg can be written as the sum of three terms (Batchelor 1970),

Tg = μg[(∇ug) + (∇ug)
T ] + Tpf + T Re, (2.26)

where the first term is the viscous stress, the second term is the particle–fluid stress
related to the particle stresslet tensor (Batchelor 1970), and the last term is the
Reynolds stress due to the fluctuation of gas velocity caused by the presence of agitated
particles. As Verberg & Koch (2006) showed, the Reynolds stress is proportional to
gas density and hence it is negligible compared to the particle phase stress unless
St/Re = (2/9)(ρs/ρg) is O(1) or less. Because St/Re 
 1 in all cases considered here,
we ignore this contribution to Tg . Then, the viscous and the particle–fluid stresses
may be modelled using an effective viscosity (e.g. Zarraga, Hill & Leighton Jr 2000).
We adopt the correlation of Happel & Brenner (1965)

Tg = Rμ(ν)μg[(∇ug) + (∇ug)
T ], (2.27)

where Rμ(ν) = exp(4.58ν) is the ratio between the suspension viscosity and the
viscosity of pure gas. We note that this expression is for suspensions with vanishing
Stokes and Reynolds number. To our knowledge, however, there is no expression for
fluid phase stress at finite Stokes and finite Reynolds number. Verberg & Koch (2006)
observed that the sum of the viscous and particle–fluid stress at intermediate Stokes
number is smaller than at vanishing Stokes numbers. However, the only aspect of
the predictions presented in the following section that is sensitive to the modelling
of the gas-phase stress is the gas velocity profile near the wall. Our LB simulations
indicate that the assumption of a nearly Maxwellian particle velocity distribution that
underlies the modelling of the particle-phase conservation equations breaks down at
a higher Stokes number than that required to allow the gas-phase stress to impact
the bulk properties of the suspension.

2.2. Shear flows between parallel boundaries

We apply the model outlined earlier to fully developed shear flows between two
parallel bumpy boundaries without body forces. The domain is periodic in the flow
and vorticity directions, respectively x and z, so that variables change only along
the gradient y-direction perpendicular to the boundaries. In this case, the mass of
both phases is automatically conserved, the momentum balances in the z-direction
vanish and the y-direction momentum balance requires that Ps be constant and Pg

be independent of y and z. The only remaining equations are x-momentum balances
and the particle fluctuation energy balance.

We write the resulting governing equations in dimensionless form using y∗ ≡ y/Y ,
u∗

s ≡ us/U , u∗
g ≡ ug/U and T ∗ ≡ T/U 2, where Y is the distance shown in figure 1, U

is the relative velocity between the top and bottom boundaries, and us and ug are
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Figure 1. Boundaries used in the LB simulations. (a) Top view showing spherical wall bumps
arranged as a periodic array in the x- and z-directions. Bumps have the same diameter σ as
flow spheres. The gap separating them is s = 0.0274σ . Section A–A illustrates the definition
of the penetration angle θ for a sphere in the position shown. (b) Side view showing the two
parallel boundaries.

the local mean particle and gas velocities in the x-direction. For convenience, we
also define the particle fluctuation velocity as w∗ ≡

√
T ∗. We make the particle phase

pressure dimensionless as P ∗
s ≡ Ps/ρsU

2.
The dimensionless particle phase momentum balance in the flow direction is then

d2u∗
s

dy∗2
+

(
1

P ∗
s

dP ∗
s

dy∗ +
1

J

dJ

dy∗ − 1

F

dF

dy∗ − 1

w∗
dw∗

dy∗

)
du∗

s

dy∗

+
5
√

π

8

1

JGw∗

[
(1 − ν)2

(Y/σ )Rdrag

St ′ (u∗
g − u∗

s ) + Rτ

]
= 0, (2.28)

where

Rτ ≡ (−dPg/dx)/ρsσ (U/Y )2 (2.29)

is the dimensionless gas phase pressure gradient. The mean Stokes number St ′ is
based on U and Y ,

St ′ =
m

3πσμg

U

Y
=

ρsUσ 2

18μgY
, (2.30)

where the prime distinguishes it from another Stokes number based on H = Y + σ

that we will introduce in § 3. The corresponding dimensionless momentum balance
for the gas phase is

d2u∗
g

dy∗2
+

1

Rμ

dRμ

dy∗
du∗

g

dy∗ +
18Y/σ

Rμ

[
ν(1 − ν)2Rdrag

Y

σ
(u∗

s − u∗
g) + RτSt ′

]
= 0.

Finally, the dimensionless particle fluctuation energy balance is

d2w∗

dy∗2
+

(
1

P ∗
s

dP ∗
s

dy∗ +
1

M

dM

dy∗ − 1

F

dF

dy∗

)
dw∗

dy∗

+

√
π

16

1

MG

[
(1 − ν)2

S∗(ν)(u∗
g − u∗

s )
2

St ′2w∗3
− 6(Y/σ )Rdiss

St ′

]

+
1

M

[
J

5

(
1

w∗
du∗

s

dy∗

)2

− 3(1 − e)

(
Y

σ

)2]
w∗ = 0. (2.31)
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2.3. Boundary conditions

In collisional granular flows, bumpy boundaries conveniently impart momentum and
fluctuation energy to the grains. In the kinetic theory for the particle phase, the
corresponding boundary conditions are applied at a plane located a particle radius
away from the bump crests (Xu et al. 2003). Accordingly, this plane is what we mean
by the ‘boundary’ for the particle phase (figure 1).

Momentum and energy transfer at the boundary to the particle phase may be
obtained by considering collisional interaction between each flow sphere and the
boundary and then integrating over all possible collisions. Jenkins & Richman (1986)
assumed a Maxwellian particle velocity distribution to calculate boundary conditions
for plane flows of identical smooth inelastic disks interacting with a bumpy wall
and for similar flows of spheres. Richman & Chou (1988) refined this calculation by
considering a perturbed Maxwellian velocity distribution near the bumpy boundary,
and Richman (1988) derived the corresponding boundary conditions for smooth
inelastic spheres. These studies all assumed that the mean relative ‘slip’ velocity
between the particles and the wall is small compared with the particle fluctuation
velocity. Xu (2003) considered flows of smooth inelastic spheres with a large slip
velocity at walls consisting of cylinders with axis perpendicular to the flow direction.

In this study, boundary bumps are arranged in the nearly hexagonal lattice sketched
in figure 1. Jenkins & Richman (1986) derived boundary conditions for a bumpy wall
with similar geometry. They considered flows of identical smooth inelastic particles
interacting with spheres randomly distributed on the wall. To simplify the calculation,
they assumed that on average, flow particles penetrate a fixed distance into wall
bumps and that the slip velocity is small compared to the fluctuation velocity at the
boundary. In this work, we extend their results to flows with large slip velocity using
the method described by Xu (2003). If we consider only the normal component of
the lubrication forces during collisions between a flow sphere and a wall sphere, we
calculate the ratio of shear to normal stress and the dimensionless flux of fluctuation
energy at the boundary (see the Appendix for derivation).

S

N
=

√
(2/π)(2/3)[2/(1 + cos θ̄ ) − cos θ̄ ][1 −

√
π/32(ew/(1 + ew))(A/StT )][

1 + (1/4) sin2 θ̄
(
u2

slip/Tw

)]
[1 −

√
1/8π(ew/(1 + ew))(A/StT )]

uslip√
Tw

,

(2.32)

and

Q

N
√

Tw

=
S

N

uslip√
Tw

−

√
8/π

1 + cos θ̄

[
1 +

(
e2
w

(1 − e2
w)

)(
A

StT

)(√
π

8
− A

8StT

)]
(1 − ew)[

1 + 1
4

(
sin2 θ̄

)u2
slip

Tw

][
1 − 1√

8π

(
ew

1 + ew

)(
A

StT

)] uslip√
Tw

,

(2.33)

where S and N are the shear and normal stresses at the wall, Q is the flux of
fluctuation energy from the boundary to the flow, uslip is the slip velocity, Tw is the
granular temperature of flow particles at the boundary, StT ≡ (τv

√
Tw)/σ is the Stokes

number based on fluctuation velocity at the boundary, A is a constant defined in
the Appendix, ew is the coefficient of normal restitution of flow spheres colliding
with the bumps, and θ̄ is the average penetration angle. Figure 1 sketches the
penetration angle θ at one of many possible contact positions of a flow sphere and
boundary bumps.
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We obtain boundary conditions for u∗
s and w∗ by extending constitutive relations

in the bulk to the boundary. For the bottom wall, we find

τ ∗
s,xy

P ∗
s

=
2J

5
√

πF

σ

Y

∂u∗
s

∂y∗

∣∣∣∣
y∗=0

=
S

N
(2.34)

and
q∗

y

P ∗
s

√
T ∗

= − 2M√
πF

σ

Y

∂w∗

∂y∗

∣∣∣∣
y∗=0

=
Q

NT
1/2
w

, (2.35)

where τ ∗
s,xy = τs,xy/ρsU

2 is the dimensionless granular shear stress, q∗
y = qy/ρsU

3 is the

dimensionless flux of particle fluctuation energy, and S/N and Q/NT 1/2
w are given by

(2.32) and (2.33). (Note that we use the symbol τs,xy for the xy component of the solid
phase stress tensor Ts in order to avoid confusion with the granular temperature.) We
then derive expressions for (∂u∗

s /∂y
∗)y∗ = 0 and (∂w∗/∂y∗)y∗ =0 from (2.34) and (2.35),

and similar expressions for the top boundary.
Because the gas fills the entire space between boundary bumps on either side, its

domain is larger than that of the grains. For simplicity, we treat the gas boundary
condition as a vanishing velocity on planes tangential to the crests of wall spheres,
and ignore the small gaps in between. In fact, the LB simulations reveal that the
average gas velocity in those gaps is almost identical to the wall velocity.

To capture the gas flow in the regions above wall bumps from which sphere centres
are excluded (figure 1), we use the approximate theory proposed by Acrivos & Chang
(1986) for transport coefficients near the interface between a porous media and a
clear fluid, which agrees well with the numerical results of Sangani & Behl (1989).
Although the theory of Acrivos & Chang (1986) could not be derived from first
principles, it may be regarded as an interpolation between Darcy’s law which applies
to the interior of the porous media and the Navier–Stokes (N-S) equations which
govern the fluid flow outside the porous media (Brinkman 1949; Sangani & Behl
1989). According to this theory, the mean gas velocity in the excluded volume satisfies

μg

d2ug

dy2
=

φ(y)

νb

βb[ug(y) − Uwall], (2.36)

where φ(y) is the area fraction of particles on a plane normal to direction y in the
excluded volume, and νb and βb are, respectively, solid volume fraction and drag
coefficient in the bulk. Because the solid volume fraction is not uniform in general,
we equate νb to the volume fraction at a distance σ/2 away from bump crests, where
the closest particle centres can reside (figure 1). We then evaluate βb from νb using
(2.21). We also calculate particle area fractions in the excluded volume by integrating
all possible contributions from particles with centres in the region σ/2 to σ away
from the crests of wall bumps, where the particle volume fractions are known from
the energy balance equation (2.31) and the constraint Ps =const.

3. Comparison with simulations
We compare the predictions of our theory with LB simulations of sheared gas–

particle flows between two parallel bumpy boundaries, which Verberg & Koch (2006)
discuss in detail. Those authors focused on flows of elastic spheres with high particle
inertia, for which the solid volume fraction is nearly uniform in the channel. In this
work, we also explore cases with greater variations of solid volume fraction, which
may be associated with low particle inertia, large fluid inertia, or granular inelasticity.
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Figure 2. Profiles of dimensionless granular fluctuation velocity T 1/2/Γ a for different St
defined in (3.2). Symbols are LB simulations and solid lines are theoretical predictions.
Simulation parameters: H/σ = 12, Re = 0.1, Rτ =0, and ν̄ = 0.3. From top to bottom: St = 100,
80, 70, 50, 40, 30, 20, 15 and 10.

In our simulations, we impose periodic boundary conditions in the x- and z-
directions. We define a Reynolds number based on particle radius and average shear
rate Γ = U/H ,

Re ≡ ρga
2Γ/μg, (3.1)

and a Stokes number slightly smaller than in (2.30),

St ≡ ρsσ
2Γ/18μg = St ′Y/H. (3.2)

To isolate the effects of the viscous gas on the flow, we first consider frictionless elastic
spheres, e = ew = 1, for which fluctuation energy is dissipated only by viscous forces.
We then turn to inelastic particles. Because the kinetic theory has successfully captured
their flows for Stokes numbers large enough that the gas plays no significant role
(e.g. Xu et al. 2003), we now confront our theory with more stringent tests involving
inelastic particles at relatively low Stokes number.

3.1. Stokes number

Figure 2 shows dimensionless profiles of fluctuation velocity for a range of Stokes
numbers and an overall solid volume fraction ν̄ =0.3. Consistent with the predictions
of Sangani et al. (1996) for simple shear flows, the granular temperature is nearly
uniform in the gap in the high-Stokes-number limit, and it decreases with St . However,
as the solid agitation declines, the solid boundary plays an increasingly important
role in providing fluctuation energy to the flow. As a result, the temperature begins to
exhibit a concave profile that betrays a significant transfer of fluctuation energy from
the boundary to interior spheres. This effect, which is not present in simple shear
flow, is captured well by the present theory.

The observed variations of the granular temperature profiles with Stokes number
may be explained by considering the ratio of the granular ‘thermal diffusion’ time
τcond ∼ H 2/(κ/νρs) and the dissipation time τdiss ∼ τv/Rdiss. The thermal diffusion time
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Figure 3. Effects of St for H/σ = 12, Rτ =0, Re =0.1 and ν̄ =0.3. Symbols are simulations
and lines are theoretical predictions. (a) Mean dimensionless fluctuation velocity T̄ 1/2/(Γ a);
(b) curvature A; (c) dimensionless slip velocity uslip/U in (3.5); and (d) kinetic shear stress

τ k
s,xy (+), collisional shear stress τ c

s,xy (�), and total shear stress (�), made dimensionless with

ρs(Γ a)2.

measures how long the granular fluctuation energy takes to conduct through the gap
between bumpy boundaries; the dissipation time characterizes the viscous dissipation
of granular fluctuation energy. When the granular temperature is nearly uniform, we
can use the prediction of Sangani et al. (1996) for T 1/2/Γ a in simple shear flow to
write

τcond

τdiss

∝
(

H

σ

)2(
Rdiss

St

)2

. (3.3)

Thus, as St decreases, (3.3) shows that the granular temperature generated at the
boundary takes a longer time to conduct into the interior and, consequently, it
becomes non-uniform.

However, as the Stokes number decreases further, the theory predicts higher
granular temperatures, and thus larger temperature gradients at the solid walls,
than the simulation. A possible reason for the discrepancy is that the lubrication
forces arising from the tangential relative velocity of flow spheres and wall bump are
ignored in the current boundary conditions for the particle phase. These tangential
forces tend to reduce the slip velocity at the boundary, which in turn results in
a smaller production of particle fluctuation energy at the walls. Because of larger
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Figure 4. As figure 3, but for ν̄ = 0.1.

temperature gradients, the predicted temperature profiles are generally more concave
than observed in the simulations. Nevertheless, as figure 2 shows, the theory captures
temperature profiles well for St � 15. Here, St =15 corresponds to St/Rdiss ≈ 2, below
which (2.4) ceases to be valid (Sangani et al. 1996). This clearly limits the validity of
our assumptions. In particular, when St is too small, it is no longer appropriate to
ignore the role of the gas in setting the velocity distribution of the solids.

As figure 2 shows, the fluctuation velocity profile is nearly parabolic for St � 15 . In
fact, for dense dry collisional granular flows, Jenkins (2001) showed that the profile of
T 1/2 is a hyperbolic cosine, which is approximately parabolic to the first order. Thus,
in order to present results for a wide range of St and ν̄, we fit both the simulation
data and the solution of (2.31) to a parabolic function

T 1/2(y∗) = T
1/2
0 [1 + A(y∗ − 1/2)2], (3.4)

where T
1/2
0 is the fluctuation velocity at the centre of the channel and A is a measure

of the profile’s curvature.
Figure 3 shows variations of the average fluctuation velocity T̄ 1/2 = T

1/2
0 (1 + A/12)

and its curvature A with St . It also displays the particle phase shear stresses (Jenkins &
Richman 1985; Sangani et al. 1996), decomposed into a kinetic contribution τ k

s,xy

corresponding to the diffusive transport of momentum across surfaces, and a
collisional contribution τ c

s,xy arising from direct contacts between particles. Finally,
figure 3 shows the mean relative (slip) velocity between the solids and the walls vs.
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St . Because the channel is symmetric, we plot the average solid slip

uslip = |[Ut − us(y
∗ = 1)] + [us(y

∗ = 0) − Ub]|/2, (3.5)

where Ut and Ub are the velocities of the top and bottom walls, respectively.
Because the spheres are elastic and frictionless in this case, the viscous dissipation is

the only available sink of fluctuation energy (equation (2.15)). Then, the dimensionless
granular temperature T/(Γ a)2 and, consequently, the granular viscosity, conductivity
and stresses grow ad infinitum with St . Thus, curvature in the mean velocity and
temperature profiles disappears as St increases, and the flow tends to a simple shear
flow with constant ν and T , where the temperature is roughly set by a simple
algebraic balance between the working of the mean shear Ts : ∇us and the dissipation
rate γvis. The result is a dimensionless fluctuation velocity T 1/2/(Γ a) that is roughly
proportional to St/Rdiss. As figure 3(a) shows, this behaviour is captured by both
theory and simulations.

As St → ∞, the only way to limit the fluctuation velocity in a sheared rapid granular
material is to allow collisional energy dissipation. In that case, a similar algebraic
fluctuation energy balance would yield an asymptotic T 1/2/(Γ a) that is a function of
ν and impact parameters.

Consistent with Maxwell’s observation (Maxwell 1879) of a wall slip proportional
to the local granular mean free path λs = σ/[6

√
2G(ν)] and the local mean velocity

gradient (∂us/∂y)y =0, the relative slip uslip/U scales roughly as σ/[YG(ν)] at moderate
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Figure 6. As figure 3, but for ν̄ = 0.4.

to high St , and thus reaches an asymptote independent of St as St → ∞, once again
in agreement with theory and simulations (figure 3c).

The role of the bumpy boundary in providing energy to the flow is related to
variations of the slip velocity. On the one hand, the particle fluctuation energy
generated at the wall is the product of the slip velocity, the shear stress at the
boundary, and the surface area of the latter. On the other hand, the energy generated
in the bulk is the volume integral of shear stress × shear rate, which, for almost
constant shear rate, is nearly the product of shear stress, mean shear rate and channel
volume. Because shear stress is invariant across the channel, the ratio of the particle
fluctuation energies produced at the boundary and in the bulk is then approximately
the dimensionless slip velocity uslip/U . As St decreases, uslip/U increases, so that more
fluctuation energy is generated at the boundary by the working of the shear stress
through the mean slip between the grains and the boundary.

Conversely, as St decreases, the temperature profile becomes more curved and the
flow no longer resembles a simple shear flow. The wall supplies fluctuation energy
to the flow by the working of the shear stress through the granular slip velocity
(Jenkins & Richman 1986). In this case, the temperature in the interior is smaller
than the temperature at the wall. Then, because the normal stress is constant in this
fully developed steady flow, the volume fraction is lowest at the wall. Consequently,
uslip/U ∼ σ/(YG) grows as St decreases. This behaviour of the slip velocity, which is
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evident in figure 3(c), persists until relatively low values of St . However, as St → 0,
particles should again follow the fluid more closely.

3.2. Solid volume fraction

As figures 3–6 show, theoretical predictions agree well with LB simulations at overall
solid volume fractions ν̄ =0.1, 0.2, 0.3 and 0.4. They both exhibit qualitatively similar
behaviour for particle fluctuation velocity, curvature of the temperature profile, mean
solid slip and solid stresses.

Because lateral variations of the temperature and volume fraction profiles are
less pronounced at lower volume fractions, changes in uslip/U with St become less
prominent as ν̄ decreases. However, because the mean free path is longer at smaller ν,
the magnitude of the relative slip velocity increases with decreasing volume fraction
(figures 3c–6c).

Solid stresses follow familiar trends in rapid granular flows. At low volume fractions,
kinetic stresses are most important. However, because the collision frequency increases
rapidly with ν, collisional stresses dominate kinetic stresses for ν̄ � 0.3 (figures 3d–6d).

As figure 6 shows, theory and simulations differ in fluctuation velocity and
shear stresses at ν̄ =0.4. We attribute the discrepancies to anisotropies in the pair
distribution function near the wall. Specifically, the theory adopts the isotropic
expression of Carnahan & Starling (1969) in (2.12). However, we expect that the
wall induces a layering of grains in its vicinity, which becomes more crucial to the
stresses as ν grows. Similarly, because Rdiss was obtained for isotropic configurations
of spheres, it may not always capture the viscous dissipation in the presence of
particle layering. To test the conjecture that layering at the wall plays a role,
we used the algorithm of Hopkins & Louge (1991) to simulate flows of nearly
elastic spheres with restitution progressively approaching unity (0.9 � e = ew � 0.9999)
in the same geometry as the LB simulations, but without gas. For ν̄ = 0.4, we
observed the same discrepancy in shear stresses between simulations and kinetic
theory using the Carnahan–Starling pair distribution, whereas the two agreed well
for ν̄ = 0.3. Nonetheless, other mechanisms may be responsible for the discrepancies.
In particular, although Sangani et al. (1996) reported no deviation from the isotropic
pair distribution with ν as large as 0.45 in unbounded simple shear simulations,
they also measured higher fluctuation velocities at that volume fraction than the
predictions of the simple shear-flow theory.

3.3. Reynolds number

Figure 7 shows variations of the dimensionless average fluctuation velocity, the
curvature of its lateral profile, the relative slip velocity, and solid shear stresses with
the inverse of the Reynolds number for fixed H/σ = 12, St = 100, Rτ = 0 and ν̄ = 0.3.
Broadly, we find that increasing Re (figure 7) has the same effect as decreasing St

(figure 3). This relation is evident in simple shear flows of elastic frictionless spheres.
There, because the granular temperature is solely determined by the ratio St/Rdiss

(Sangani et al. 1996), and because Rdiss increases linearly with ReT (equation (2.17)), an
increase of the Reynolds number or a reduction in the Stokes number both contribute
to decreasing St/Rdiss. Curiously, because T̄ 1/2/Γ a increases with decreasing Re, ReT

can remain large even when Re is small. Consequently, results continue to depend on
Re down to values as small as Re ≈ 0.1.

Although our bounded shear flows do not produce a uniform ReT , flows that share
comparable ratios St/Rdiss, in which Rdiss is calculated from T̄ 1/2 and ν̄, exhibit similar
profiles of temperature, volume fraction and mean particle velocity, despite having
widely different St and Re (figure 8).
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Figure 7. Effects of Re defined in (3.1) on theory and LB simulations for H/σ = 12,
St = 100, Rτ = 0 and ν̄ = 0.3. Graphs and symbols, see figure 3.

3.4. Channel width

We investigated the effects of channel width by varying H/σ from 6 to 18, while
keeping St = 20, Re = 0.1 and ν̄ =0.3 constant (figure 9). The granular temperature is
nearly uniform in the narrowest channel. In wider channels, the fluctuation velocity
rises near the wall and decreases in the interior, and thus the centreline solid volume
fraction increases with width.

At first sight, this behaviour may seem counterintuitive. We might expect that,
as H/σ increases, the boundaries would play a lesser role in the bulk, therefore
creating a simple shear flow there. In fact, because grains in the bulk derive their
agitation from the working of shear forces competing with the local volumetric rate
of collisional energy dissipation, and because the agitation sets the magnitude of the
viscous transport of momentum, the granular temperature in the bulk decays with
increasing channel width, thus reducing the velocity gradient there. For large enough
H/σ , the agitation collapses and the collisional theory breaks down altogether. Such
behaviour is common in dry granular flows, where solid boundaries can only maintain
agitation to a limited depth into the flow (e.g. Mueth et al. 2000; Jenkins 2001).
In experiments that probably involved impulsive as well as longer-range enduring
granular interactions, Mueth et al. (2000) observed that granular temperature decays
exponentially away from a moving boundary. In dense rapid granular flows, Jenkins
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s ; (b) dimensionless fluctuation velocity T̄ 1/2/(Γ a); (c) solid volume
fraction.

(2001) showed that the fluctuation velocity decays as a hyperbolic cosine function of
distance from the wall. For gas–solid flows in the dense limit, a simple balance of the
flux gradient ∇ · q, the shear production Ts : ∇us , and the viscous dissipation term γvis

yields a similar result:

(T +)1/2(y∗) = [(T +)1/2(y∗ = 0) − B]
cosh(k(y∗ − 1/2)Y/σ )

cosh(kY/2σ )
+ B, (3.6)

where T + ≡ T/(Γ a)2,

k ≡

√
1

M

[
3
√

π

2G

Re

St
K − 5πF 2

4J

(
τs,xy

Ps

)2]
,

B ≡ 3
√

π

4G

Rdiss,0

St

1

Mk2

H

Y
,
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Figure 9. Transverse profiles vs. dimensionless channel width H/σ for St = 20, Re = 10 and
ν̄ = 0.3. (a) Dimensionless fluctuation velocity T 1/2/(Γ a); (b) solid volume fraction. Symbols
are LB simulations and lines are theoretical predictions; H/σ = 6 (circles and solid lines), 8
(crosses and dashed lines), 12 (triangles and dash-dotted lines), and 18 (pluses and dotted
lines).

and K is either Ks(ν) or Kl(ν) defined in (2.19), whichever is appropriate. Equa-
tion (3.6) implies that the granular temperature decays faster with y∗ as Y/σ increases,
a prediction that is consistent with LB simulation data.

Another way to understand the effect of channel width on granular temperature
is to consider the ratio of τcond and τdiss defined in § (3.1). As (3.3) shows, τcond/τdiss

increases with H/σ . Therefore, the flow becomes less uniform as the channel widens.
In doing so, it progressively develops a dense, almost static, core region and a dilute
agitated sheared band near the walls. This phenomenon is captured by the theory.
Because the number of particles in LB simulations and, consequently, the computer
time increase with channel size, we did not generate data for very wide channels.
However, results for H/σ = 18 in figure 9 reveal an increase in solid volume fraction
at the centreline.

Liss, Conway & Glasser (2002) showed that, for gravity-driven collisional granular
flows in a vertical channel, transverse non-uniformities may lead to density waves in
the flow direction. In our flow with small St and/or large H/σ , the same instability
mechanism could arise. In fact, at large channel width, our continuum theory predicts
a highly non-uniform solid volume fraction tending to random close packing near
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the centre of the channel, which could betray the onset of instabilities. However, the
relatively limited channel lengths of our LB simulations may have prevented the onset
of such instability.

Because the average gas velocity is nearly identical to that of the solid phase,
we did not mention it in the preceding figures and discussions. To illustrate this,
figure 10 compares the dimensionless gas and solid velocities at ν̄ = 0.1 and 0.3. The
simulations only reveal a noticeable difference between ug and us near the walls
under the most dilute conditions, which is captured well by our continuum theory.
The theory also predicts well the depth of the region where the relative velocity
between the two phases is appreciable. The small relative velocity results in a very
small contribution from the gas phase to the production of particle fluctuation
energy, i.e. S∗ in (2.22). Consequently, the viscous gas acts almost solely as an
additional dissipation mechanism for particle fluctuations. Moreover, our treatment
of boundary conditions for the gas phase at the solid walls may be justified by the
agreement between the theoretical predictions and simulation results of gas velocity
in the ‘excluded volume’ near the solid boundaries.
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Figure 11. Transverse profiles in flows of inelastic spheres, St =30, Re = 0.1, H/σ = 12 and
ν̄ = 0.3. Symbols are LB simulations and lines are theoretical predictions. Circles and thick
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crosses and dotted lines: e = 0.8. (a) Dimensionless mean particle velocity u∗

s ; (b) dimensionless
fluctuation velocity T̄ 1/2/(Γ a); (c) solid volume fraction.

3.5. Inelasticity

When particles are inelastic, the additional dissipation of particle fluctuation energy
due to inelastic collisions will cause the assumptions in our theory to breakdown
at higher Stokes numbers and/or lower Reynolds numbers. In fact, it is known
that even for pure granular flows, the constitutive relations derived from kinetic
theory become inaccurate as inelasticity increases (Bizon et al. 1999). Numerical
simulations of inelastic granular flows indicate that the mean flow profiles predicted
by kinetic theory agree with simulations as long as e � 0.7. In figure 11, we compare
the predictions of our theory for gas–solid flows with LB simulations for spheres
with coefficient of restitution e = 1, 0.95, 0.9 and 0.8, respectively. Other parameters
are St = 30, Re =0.1 and ν = 0.3. In the case of homogeneous flows, the viscous
dissipation can be incorporated into an effective coefficient of restitution as

eeff = e − 15πR2
diss

128JG2St2

[
1 +

√
1 +

256JG2St2

R2
diss

(1 − e)

]
. (3.7)
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For the conditions of figure 11 and with a constant ν̄ = 0.3, (3.7) yields eeff =0.96,
0.88, 0.82 and 0.69 for e = 1, 0.95, 0.9 and 0.8, respectively. However, we do not
expect (3.7) to hold across the entire channel at the lowest elasticity. In this case,
higher volume fractions at the centre of the channel enhance viscous dissipation. This
produces local values of eeff that are lower than their global estimate based on ν̄, thus
probably causing greater deviations from theoretical predictions. Nonetheless, as in
pure granular flows, profiles predicted by the theory agree well with simulations for
eeff � 0.7.

4. Conclusions
In this paper, we considered flows of a gas and agitated solids sheared between

two parallel bumpy walls at moderate Stokes numbers and small to moderate particle
Reynolds numbers. We developed and solved a set of averaged equations in which the
particulate phase is treated using a granular kinetic theory and the gas gives rise to
interphase drag forces, a viscous stress, and, most importantly, a viscous dissipation
of the granular kinetic energy.

In general, bounded shear flows differ from unbounded simple shear by developing
substantial particle slip velocity at the wall and profiles of flow variables across the
channel. At large Stokes numbers, the flow is nearly uniform and, as Verberg & Koch
(2006) observed, the rheology can be modelled using an unbounded flow theory with
an effective shear rate. Our theoretical predictions agree well with simulations and
can be used to calculate the effective shear rate required in such simple unbounded
flow theory.

At intermediate Stokes numbers, bounded flows are no longer homogeneous. Energy
is produced at the walls and is transported inward by granular conduction. However,
the dissipation of energy due to viscous effects and particle inelasticity substantially
reduces the granular temperature in the middle of the channel at smaller Stokes
numbers and/or smaller coefficients of restitution. Our predicted profiles of the
particle volume fraction and the mean and fluctuation velocity compare well with
the LB simulation results for e = 1 and overall Stokes numbers as low as ∼ 15
and for St = 30 and e � 0.9. The theory captures the effects of Reynolds number,
channel width, particle volume fraction and inelasticity on the flow. Although the
theory accounts for such subtle effects as the variation of the interphase drag due to
excluded volume effects near the wall and the lubrication energy losses as particles
collide with the wall, the primary results of the theory depend only on the granular
transport mechanisms and the viscous dissipation of granular kinetic energy by the
gas. This energy dissipation has been determined as a function of particle volume
fraction and a Reynolds number based on the granular temperature by Verberg &
Koch (2006) based on the detailed hydrodynamic flows produced by agitated solids.

Our theory deviates from our simulation results at small Stokes numbers and/or
small values of the coefficient of restitution. It is of interest to consider the origins
of these deviations so that a better theory might be proposed in the future. In the
averaged equation for the gas phase we made the crude approximation that the
viscous stress in the gas was given by a constitutive equation developed by Happel &
Brenner (1965) for suspensions with vanishingly small Stokes numbers, cf. (2.27). We
can extract from the simulations the viscous contributions to the stress, including
the contributions of the particle stresslets, and thereby provide a direct test of
this aspect of the theory. Figure 12 compares the viscous stress predicted by the
Happel & Brenner theory with the results of LB simulations for St =30; the viscous
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simulations and —–, the Happel & Brenner (1965) prediction. The circles show the total
viscous contribution to stress normalized by fluid viscosity μg and the shear rate du/dy
obtained from LB simulations at St = 30. The line is the prediction of the ratio of the
suspension viscosity at low Reynolds and Stokes numbers to the fluid viscosity.

stress was found to be insensitive to St for St 
 1. The viscous stress obtained
from simulations at high Stokes numbers has the same order of magnitude as that
for St � 1 and has a qualitatively similar dependence on particle volume fraction.
However, the high-Stokes-number viscous stress is systematically lower than the
Happel & Brenner prediction. This is not surprising because particle inertia would
be expected to inhibit the formation of particle clusters that contribute much of the
viscous stress in low-Stokes-number suspensions at high volume fractions (Verberg &
Koch 2006). It should be noted, however, that the viscous stresses have a negligible
effect on the flow profiles presented in this paper. The viscous stress remains at least
an order of magnitude smaller than the particle-phase stress even at St = 10 where
the deviation of the simulation profiles from the theoretical predictions is substantial.

When the theory deviates from the simulations, the stress derived from the
simulation is still dominated by the kinetic and collisional contributions from the
particulate phase. The primary difference between the theory and simulation at small
Stokes numbers (St = 10 in figure 2) or small coefficients of restitution (St = 30 and
e = 0.8 in figure 11) is that the theory predicts a more pronounced collapse of the
granular temperature and increase of the particle volume fraction in the centre of
the channel. These deviations occur when T 1/2/Γ a < 1. The particle volume fraction
profile is determined by the condition, derived from the cross-stream momentum
balance, that the granular pressure should remain constant across the gap. If we
use the local flow conditions predicted by the simulations to compute the kinetic
and collisional contributions to the (y, y)-component of the stress, we find that the
theoretical predictions for the kinetic stress are in very good agreement with the
simulated stress even for St =30 and e = 0.8 (corresponding to eeff = 0.69). However,
the theory underpredicts the collisional contribution to the stress significantly. These
observations are consistent with studies of granular flows where it is found that
kinetic theory breaks down at e ≈ 0.7 and that the deviations from the theory involve
collisional stresses and not kinetic stresses (Bizon et al. 1999). Bizon et al. noted that
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the collisional stresses deviate from the kinetic theory because of two effects. (i) The
spatial distribution of inelastic particles has more close pairs than predicted for elastic
hard spheres. (ii) Pairs of inelastic particles have correlated velocities. The first effect
tends to increase the collisional stress whereas the latter reduces it. Simulations of
granular flows yield a collisional pressure that is larger than predicted by kinetic theory
because the correlation in the velocity of neighbouring particles has the predominant
effect (Bizon et al. 1999; Mitarai & Nakanishi 2007). In contrast, our simulations
indicate that the collisional stress in a gas–solid suspension is underpredicted by the
kinetic theory. We believe that the hydrodynamic forces associated with the mean gas
flow and the fluctuating gas flows induced by particles may lead to greater relative
velocities of neighbouring particles than are seen in granular flows without a gas. The
increased spatial correlation of particles induced by lubrication forces and inelastic
collisions would then be expected to increase the collisional stress relative to the
predictions of a kinetic theory using hard-sphere pair distribution function. Thus,
a theory that captures the spatial correlations of particles in a sheared gas–solid
suspension and the resulting collisional stresses may be able to extend the current
predictions to even lower Stokes numbers and coefficients of restitution.
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Appendix. Boundary conditions for the solid phase at the bumpy boundary
Here, we derive expressions for the stress and the flux of fluctuation energy (‘heat’

flux) for a flow of inelastic smooth spheres in a viscous gas at a bumpy wall shown
in figure 1, by considering the momentum and energy transfer during each collision
between a flow sphere and a wall bump and integrating over all such collisions. For the
problem to remain tractable, we neglect the effect of other nearby flow spheres and wall
bumps on the hydrodynamic interaction between the colliding pair and treat them as
in an infinite medium. We also neglect particle rotation and the tangential lubrication
force as it is much smaller than the normal force. Even with the above simplifications,
the problem is still complicated. The main difficulty is that the velocity distribution
of the flow spheres just before colliding with the wall is unknown. In principle, we
could solve the Boltzmann equation at the boundary to find this velocity distribution.
The task is, however, formidable, especially when dealing with non-flat walls as in
our case. Fortunately, the expressions for the stress and the heat flux at the wall,
being integrals over the velocity distribution, are not sensitive to the exact functional
form of the velocity distribution. For example, in Xu (2003), the differences between
calculated stresses and heat fluxes at a flat frictional wall using three very different
velocity distributions for the colliding spheres are surprisingly small. Therefore, it is a
common practice to use a velocity distribution obtained from solving the Boltzmann
equation in an infinite domain when calculating the boundary conditions for granular
flows. The other difficulty encountered when deriving boundary conditions is the
orders of truncation. As it is not usually possible to evaluate the integrals in closed
form, especially when there is slip between the flowing particles and the solid walls,
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some form of expansion and truncation of terms, e.g. in powers of the inelasticity
1 − e, the dimensionless slip uslip/T 1/2 at the wall, and parameters characterizing
the roughness of the wall (see details later in this Appendix), must be invoked. It
is therefore necessary to keep the boundary conditions to the same order of the
parameters used in truncation as the hydrodynamic equations themselves. We show
below how these problems were handled when deriving the boundary conditions for
our cases.

Sundararajakumar & Koch (1996) calculated the energy loss in a collision between
two elastic spheres in a viscous gas. Their result shows that the energy loss can be
written in the form of an equivalent coefficient of restitution

evis =1 − A

Stn
, (A 1)

where Stn ≡ τvun/a is the Stokes number based on un, the relative velocity between
two spheres along the line of centre before collision; A= log(δ0/λ)−1.28 is a constant;
δ0 = 0.1a is the distance threshold above which the hydrodynamic forces between the
two spheres can be neglected, and λ is the mean free path of the gas molecules. The
loss of kinetic energy during a collision is (1 − e2

vis)u
2
n/2. For inelastic spheres, it is

straightforward to show that the loss of kinetic energy due to the combined effect
of inelasticity and viscous damping is (1 − e2

eff )u2
n/2 with the effective coefficient of

restitution given by

eeff = eevis = e(1 − A/Stn), (A 2)

where e is the coefficient of restitution due to inelasticity. Note that eeff depends on
the collision velocity through evis.

As shown by Jenkins & Richman (1986), the collisional momentum transfer per
unit area at a bumpy wall consisting of spheres can be calculated by integrating over
all possible collisions

M =
4χ

π

σ 2

(d + s)2
m

∫
g · k>0

(1 + eeff )k(g · k)2f (C, p + σ̄ k) dC dk, (A 3)

where σ is the diameter of flow spheres, d is the diameter of wall spheres, σ̄ = (d + σ )/2
is the distance between sphere centres at collision, s is the distance between the edges
of wall spheres, m is the mass of the flow sphere, the factor χ accounts for the change
of collision probability due to the finite size of the spheres and the shielding effect
of other particles, k is the unit vector pointing from the centre of the wall sphere
to the centre of the flow sphere, g = v − C is the velocity of the flow sphere relative
to the wall sphere, v is the relative velocity between the mean flow and the wall, C
is the fluctuation velocity of the colliding flow sphere relative to the mean flow, and
f (C, p + σ k) is the velocity distribution of flow spheres at the position of collision.
We adopt the modified Maxwellian velocity distribution function given by Richman
(1988) for inelastic spheres

f (C, p + σ̄ k) =
n

(2πT )3/2

{
1 +

σ̄

T
[(k · ∇ − N · ∇)u] · C −

√
2

π

σB

T 3/2
C · D̂ · C

}
e−C2/2T ,

(A 4)

in which n is the number density of flow spheres, T is the granular temperature at the
boundary, N is the unit vector normal to the wall, u is the mean velocity of the flow



206 H. Xu, R. Verberg, D. L. Koch and M. Y. Louge

spheres, B is a known function of particle volume fraction, and D̂ is the deviatoric
part of the symmetric velocity gradient of flow spheres.

Similarly, the energy loss per unit wall area can be written as

D =
2χ

π

σ 2

(d + s)2
m

∫
g · k>0

(
1 − e2

eff

)(
g · k

)3
f (C, p + σ̄ k) dC dk. (A 5)

The integrals (A 3) and (A 5) are evaluated by substituting (A 4) into them and
noting that Stn = 2τv(g · k)/σ in the expression for eeff . The detailed procedure is
similar to the derivation of boundary conditions for the flow of smooth inelastic
spheres over a wall with the same geometry in the absence of viscous gas, as shown
in Xu (2003). We give only an outline here. We first note that for the hexagonal
configuration of wall spheres, the penetration angle θ ≡ sin−1[(d + s)/2σ ] varies with
the azimuthal angle about the normal vector N . Since the change of θ is rather small
for this configuration, we approximate the integrals by first integrating over θ to obtain
the average θ̄ and then carrying other integrations with this fixed θ̄ . After integrating
over dC , we encounter in the integrand, error functions and exponential functions
that involve the dimensionless slip velocity v sin θ̄/

√
T . The second approximation is

to expand these functions as power series of v sin θ̄/
√

T and truncate at appropriate
orders before integrating over dk. In flows with a mean gas pressure gradient or a
streamwise body force, the slip velocity can be large, i.e. v/

√
T ∼ O(1). However, we

notice that most practical bumpy boundaries satisfy sin θ̄ � 1. We therefore retain
only terms that are of order sin2 θ̄ and neglect higher-order terms in the integral. The
final result of the shear and normal stresses are

S = 1
2
(1 + e)ρχT

v√
T

√
2

π

2

3

(
2

1 + cos θ̄
− cos θ̄

)(
1 − 1

4

√
π

2

e

1 + e

A

StT

)
, (A 6)

and

N = 1
2
(1 + e)ρχT

(
1 + 1

4
sin2 θ̄

v2

T

)(
1 − 1

2
√

2π

e

1 + e

A

StT

)
, (A 7)

where ρ = nm is the density of the solid phase and StT ≡ τv

√
T /σ is the Stokes number

based on particle fluctuation velocity. The energy loss is

D = 1
2
ρχT 3/2 1

1 + cos θ̄

[
2

√
2

π
(1 − e2) + e2 A

StT

(
1 −

√
2

π

A

4StT

)]
. (A 8)

The unknown factor χ can be eliminated by using the ratio of shear to normal stress
and the dimensionless energy flux Q at the boundary

Q

N
√

T
=

Sv − D

N
√

T
. (A 9)

The expressions are given as (2.32) and (2.33) in § 2.3.

REFERENCES

Acrivos, A. & Chang, E. 1986 A model for estimating transport quantities in two-phase materials.
Phys. Fluids 29, 3–4.

Anderson, T. B. & Jackson, R. 1967 A fluid mechanical description of fluidized beds. Ind. Engng
Chem. Fundamentals 6, 527–539.

Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41,
545–570.



Dense, bounded shear flows of solid spheres in a viscous gas 207

Bizon, C., Shattuck, M. D., Swift, J. B. & Swinney, H. L. 1999 Transport coefficients for granular
media from molecular dynamics simulations. Phys. Rev. E 60, 4340–4351.

Bolio, E. J., Yasuna, J. A. & Sinclair, J. L. 1995 Dilute, turbulent gas–solid flow in risers with
particle–particle interactions. AIChE J. 41, 1375–1388.

Brinkman, H. C. 1949 A calculation of the viscous force exerted by a flowing fluid on a dense
swarm of particles. Appl. Sci. Res. A 1, 27–34.

Carman, P. C. 1937 The determination of the specific surface area of powder I. J. Soc. Chem. Ind.
57, 225–236.

Carnahan, N. F. & Starling, K. E. 1969 Equation of state for nonattracting rigid spheres. J. Chem.
Phys. 51, 635–636.

Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops, and Particles . Academic.

Dasgupta, S., Jackson, R. & Sundaresan, S. 1994 Turbulent gas–particle flow in vertical risers.
AIChE J. 40, 215–228.

Ergun, S. 1952 Pressure drop through granular beds. Chem. Engng Prog. 48, 84–88.
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